DET
DET (Detective) applies Divide Hierarchical Clustering to the seed list, learns which dimensions exhibit stable values, and expands those regions while maintaining an adaptive scanning frontier. Leaf patterns generate candidates by relaxing low-entropy dimensions first.
- Reference: Placeholder citation (coming soon).
Train
rmap train --seeds seeds/hitlist.txt --output models/det.bin det \
--m 4 --min-leaf-size 10Generate
rmap generate --model models/det.bin --count 200000 \
--unique --output det.txtConfiguration
--m <usize>– bits per dimension when projecting addresses into vectors (default4, producing 32 dimensions).--min-leaf-size <usize>– minimum number of seeds allowed in a leaf before it splits (default10).--seed <u64>– optional RNG seed (default0).
Model notes
- Smaller
--mvalues increase dimensionality and may uncover finer-grained prefixes at the cost of runtime. - The serialized model captures both the space tree and per-leaf decision structures (DS/TS) so deterministic replay is possible across tool versions.