6GAN
6GAN tokenises IPv6 addresses, trains a generator/discriminator pair under reinforcement learning, and samples the learned policy to emit candidates that mimic the structural distribution of the seed set.
- Reference: Placeholder citation (coming soon).
Train
rmap train --seeds seeds/hitlist.txt --output models/6gan.bin six-gan \
--num-classes 4 --embedding-dim 200 --hidden-dim 200Generate
rmap generate --model models/6gan.bin --count 100000 \
--output 6gan.txtConfiguration
--seed <u64>– RNG seed used for both training initialisation and model metadata (default42).--num-classes <usize>– number of generator heads trained for multi-pattern output (default4).--embedding-dim <usize>– size of the token embedding layer (default200).--hidden-dim <usize>– width of the LSTM layers (default200).
Model notes
- Training leverages the Candle backend and currently targets CPU; large datasets may require patience compared to classical TGAs.
- Serialized models store aggregated metrics (pretrain, discriminator, reward) for reproducibility but do not yet export raw network weights.