6GCVAE
6GCVAE encodes IPv6 addresses as token sequences, passes them through gated convolutional encoder/decoder networks, and samples from the latent space to synthesise new addresses. Kullback–Leibler regularisation steers the latent distribution toward a smooth manifold for exploration.
- Reference: Placeholder citation (coming soon).
Train
rmap train --seeds seeds/hitlist.txt --output models/6gcvae.bin six-gcvae \
--latent-dim 32 --hidden-dim 128 --epochs 100Generate
rmap generate --model models/6gcvae.bin --count 100000 \
--output 6gcvae.txtConfiguration
--seed <u64>– RNG seed for training and generation (default42).--latent-dim <usize>– dimensionality of the VAE latent space (default32).--hidden-dim <usize>– width of convolutional layers (default128).--epochs <usize>– training epochs before early stopping (default100).
Model notes
- The implementation currently caps epochs internally for demo builds; expect truncated training loops when running the default configuration.
- Serialized models store tokenizer metadata and network parameters so the generator can reproduce the same sampling behaviour offline.