6VecLM
6VecLM tokenises each nybble position as a word, feeds the sequence through a transformer encoder, and learns to autoregressively predict the next nybble. Sampling the trained model yields candidates that respect long-range dependencies captured in the attention layers.
- Reference: Placeholder citation (coming soon).
Train
rmap train --seeds seeds/hitlist.txt --output models/6veclm.bin six-veclm \
--d-model 128 --n-head 8 --d-ff 512 --n-layers 6Generate
rmap generate --model models/6veclm.bin --count 100000 \
--output 6veclm.txtConfiguration
--seed <u64>– RNG seed for parameter initialisation and sampling (default42).--d-model <usize>– transformer hidden size (default128).--n-head <usize>– number of attention heads (default8).--d-ff <usize>– feed-forward network width (default512).--n-layers <usize>– encoder stack depth (default6).
Model notes
- Training leverages Candle; GPU acceleration is recommended for production-scale datasets.
- The generated model bundle packages tokenizer metadata and network parameters for reproducible inference.